

This article was downloaded by:

On: 30 January 2011

Access details: Access Details: Free Access

Publisher Taylor & Francis

Informa Ltd Registered in England and Wales Registered Number: 1072954 Registered office: Mortimer House, 37-41 Mortimer Street, London W1T 3JH, UK

Spectroscopy Letters

Publication details, including instructions for authors and subscription information:

<http://www.informaworld.com/smpp/title~content=t713597299>

A THEORETICAL INVESTIGATION OF 3D J-RESOLVED NMR SPECTROSCOPY FOR IS_nK_m ($I = 1/2$ $S = 1/2$ AND $1, K = 1$) SPIN SYSTEMS

Azmi Gençten^a; Özden Tezel^a

^a Department of Physics, Faculty of Arts and Sciences, Ondokuz Mayis University, Samsun, Turkey

Online publication date: 31 May 2001

To cite this Article Gençten, Azmi and Tezel, Özden(2001) 'A THEORETICAL INVESTIGATION OF 3D J-RESOLVED NMR SPECTROSCOPY FOR IS_nK_m ($I = 1/2$ $S = 1/2$ AND $1, K = 1$) SPIN SYSTEMS', *Spectroscopy Letters*, 34: 3, 317 — 324

To link to this Article: DOI: 10.1081/SL-100002286

URL: <http://dx.doi.org/10.1081/SL-100002286>

PLEASE SCROLL DOWN FOR ARTICLE

Full terms and conditions of use: <http://www.informaworld.com/terms-and-conditions-of-access.pdf>

This article may be used for research, teaching and private study purposes. Any substantial or systematic reproduction, re-distribution, re-selling, loan or sub-licensing, systematic supply or distribution in any form to anyone is expressly forbidden.

The publisher does not give any warranty express or implied or make any representation that the contents will be complete or accurate or up to date. The accuracy of any instructions, formulae and drug doses should be independently verified with primary sources. The publisher shall not be liable for any loss, actions, claims, proceedings, demand or costs or damages whatsoever or howsoever caused arising directly or indirectly in connection with or arising out of the use of this material.

**A THEORETICAL INVESTIGATION OF 3D
J-RESOLVED NMR SPECTROSCOPY FOR
 IS_nK_m ($I = 1/2, S = 1/2$ AND $1, K = 1$)
SPIN SYSTEMS**

Azmi Gençten and Özden Tezel

Department of Physics, Faculty of Arts and Sciences,
Ondokuz Mayıs University, Samsun, Turkey

ABSTRACT

The product operator formalism is widely used for an analytical description of multi-dimensional and multiple-pulse NMR experiments for the weakly coupled spin systems having spin $\frac{1}{2}$ and spin-1. Note that 3D J-resolved NMR spectroscopy is also widely used in order to resolve the chemical shift along the one axis and spin-spin coupling parameters along the two different axes. Therefore, the purpose of this study is to present first the analytical description of heteronuclear 3D J-resolved NMR spectroscopy for both IS_nK_m ($I = 1/2, S = 1/2, K = 1; n = 1, 2, m = 1, 2$) and IS_nK_m ($I = 1/2, S = 1, K = 1; n = 1, 2, m = 1, 2$) spin systems by using the product operator theory.

Key Words: Product operator; 3D J-resolved NMR; Spin-1.

INTRODUCTION

There exists a large number of homo and heteronuclear multiple-pulse 1D, 2D, and 3D NMR experiments. For the analytical description of these

multiple-pulse NMR experiments, product operator formalism is widely used [1–7]. In this formalism, the spin operators themselves and their direct products called *product operators* are used. In one-dimensional NMR, as the multiplets from different chemically shifted nuclei overlap, spectral assignments become too difficult. In order to resolve the chemical shift and spin-spin coupling parameters along the different axes, 2D and 3D J-resolved NMR spectroscopy are widely used [e.g. 8,9]. In 3D J-resolved NMR spectroscopy, the chemical shift is resolved along one axis and spin-spin coupling parameters along two different axes. The product operator description of heteronuclear 2D J-resolved NMR and 2D DEPT J-resolved NMR spectroscopy for the weakly coupled IS_n ($I = 1/2$, $S = 1$) spin systems has been reported elsewhere [10,11]. In this study, by using the product operator theory, the analytical descriptions of heteronuclear 3D J-resolved NMR spectroscopy for the weakly coupled IS_nK_m ($I = 1/2$, $S = 1/2$, $K = 1$; $n = 1,2$, $m = 1,2$) and IS_nK_m ($I = 1/2$, $S = 1$, $K = 1$; $n = 1,2$, $m = 1,2$) spin systems are presented. To the best of our knowledge, this will be the first application of product operator theory to 3D J-resolved NMR spectroscopy for these spin systems.

THEORY

Time dependency of the density matrix is given by [6,7]

$$\sigma(t) = \exp(-iHt)\sigma(0)\exp(iHt). \quad (1)$$

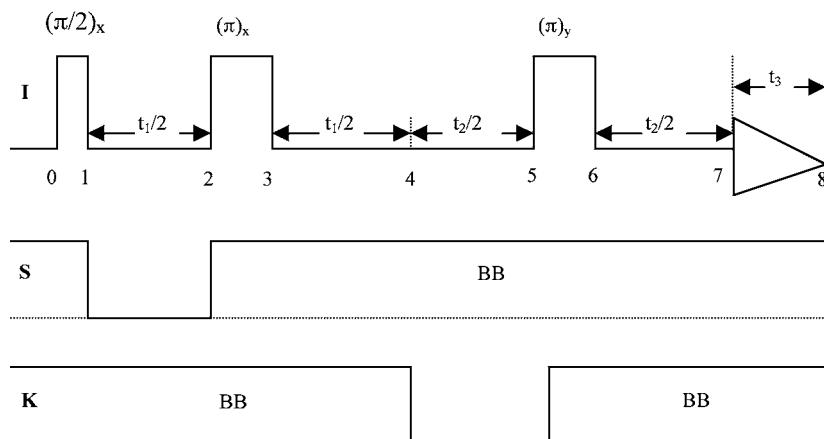
Where H is the total Hamiltonian which consists of radio frequency (r.f.) pulse, chemical shift and spin-spin coupling Hamiltonians, and where $\sigma(0)$ is the density matrix at $t = 0$. After employing the Hausdorff formula (6,7)

$$\begin{aligned} \exp(-iHt)A\exp(iHt) &= A - (it)[H, A] + \frac{(it)^2}{2!}[H, [H, A]] \\ &\quad - \frac{(it)^3}{3!}[H, [H, [H, A]]] + \dots, \end{aligned} \quad (2)$$

the r.f pulse, chemical shift and spin-spin coupling evolution of product operators can easily be obtained [1,6,7]. The details on the evolution of product operators under these Hamiltonians can be found elsewhere [1,6,7,10]. At any time during the experiment, the ensemble averaged expectation value of the spin angular momentum, e.g. for I_y , is

$$\langle I_y \rangle = \text{Tr}(I_y s(t)). \quad (3)$$

Where $s(t)$ is the density matrix operator calculated from Eq. (1) at any time. As $\langle I_y \rangle$ is proportional to the magnitude of the y magnetization, it represents the signal detected on the y-axis. Therefore, in order to estimate the FID signal of a


multiple-pulse NMR experiment, the density matrix operator should be obtained at the end of the experiment.

Analytical Description of 3D J-Resolved NMR

In this study, for the analytical descriptions of 3D J-resolved NMR spectroscopy of IS_nK_m ($I = 1/2, S = 1/2, K = 1; n = 1, 2, m = 1, 2$) and IS_nK_m ($I = 1/2, S = 1, K = 1; n = 1, 2, m = 1, 2$) spin systems by using product operator theory, the pulse sequence illustrated in Figure 1 is used. As seen in Figure 1, the density matrix operator at each stage of the experiment is labeled with numbers. In the pulse sequence, it is assumed that during t_1 and t_2 , relaxation and evolution under chemical shift do not take place. Spin-spin couplings obviously exist during the first half of t_1 (between I and S spins) and also during the first half of t_2 (between I and K spins). This section is divided into two subsections for both IS_nK_m ($I = 1/2, S = 1/2, K = 1; n = 1, 2, m = 1, 2$) and IS_nK_m ($I = 1/2, S = 1, K = 1; n = 1, 2, m = 1, 2$) spin systems.

IS_nK_m ($I = 1/2, S = 1/2$ and $K = 1$) Spin System

For IS_nK_m ($I = 1/2, S = 1/2, K = 1; n = 1, 2, m = 1, 2$) spin system, in the equations following abbreviations are used: $C_{nJ} = \cos n \pi J \frac{t_1}{2}$, $C'_{nJ} = \cos n \pi J' t_2$

Figure 1. The gated decoupler pulse sequence for heteronuclear 3D J-resolved NMR spectroscopy.

and $C_I = \cos\Omega_I t_3$. Where J and J' are the spin-spin coupling parameters between I and S spins; and I and K spins, respectively.

For the **ISK** spin system $\sigma_0 = I_z$ is the density matrix operator at thermal equilibrium and the pulse sequence in Figure 1 obviously leads to the following density matrices for each labelled point:

$$\sigma_1 = -I_y, \sigma_2 = -I_y C_J, \quad (4)$$

$$\sigma_3 = \sigma_4 = I_y C_J \quad (5)$$

and

$$\sigma_5 = \sigma_6 = \sigma_7 = I_y C_J + I_y K_z^2 C'_J C_J - I_y K_z^2 C_J. \quad (6)$$

Under the chemical shift evolution during t_3 , density matrix becomes

$$\sigma_8 = I_y C_J C_I + I_y K_z^2 C'_J C_J C_I - I_y K_z^2 C_J C_I. \quad (7)$$

In density matrix operators, only the terms with observable product operators are kept, as they are the only ones contribute to the signal on y-axis detection. Then, magnetisation along y axis is proportional to $\langle I_y \rangle$ and

$$M_y(t_1, t_2, t_3) \propto \langle I_y \rangle = \text{Tr}(I_y \sigma_8). \quad (8)$$

Now, it is necessary to obtain the $\text{Tr}(I_y O)$ values of observable product operators indicated by O . For $IS_n K_m$ spin system ($I = 1/2, S = 1/2, K = 1, n = 1, 2, m = 1, 2$), $\text{Tr}(I_y O)$ values were calculated by a computer program and the results are given in Table 1. By using the Table 1, for the $\text{Tr}(I_y I_y)$ and $\text{Tr}(I_y I_y K_z^2)$ values of ISK spin system,

Table 1. The Results of the $\text{Tr}(I_y O)$ Calculations for Some of the Observable Product Operators in $IS_n K_m$ Spin System ($I = 1/2, S = 1/2, K = 1; n = 1, 2, m = 1, 2$)

Spin System	Product Operator (O)	$\text{Tr}(I_y O)$
ISK	I_y	3
	$I_y K_z^2$	2
$IS_2 K$	I_y	6
	$I_y K_z^2$	4
ISK_2	I_y	9
	$I_y (K_{1z}^2 + K_{2z}^2)$	12
	$I_y K_{1z}^2 K_{2z}^2$	4

$$\begin{aligned}
 \langle I_y \rangle &= C_J C_I + 2C_J C'_J C_I \\
 &= \frac{1}{2} \left[\cos\left(\Omega_I t_3 + \frac{\pi J t_1}{2}\right) + \cos\left(\Omega_I t_3 - \frac{\pi J t_1}{2}\right) \right] \\
 &\quad + \frac{1}{2} \left[\cos\left(\Omega_I t_3 + \pi J' t_2 + \frac{\pi J t_1}{2}\right) + \cos\left(\Omega_I t_3 + \pi J' t_2 - \frac{\pi J t_1}{2}\right) \right] \\
 &\quad + \frac{1}{2} \left[\cos\left(\Omega_I t_3 - \pi J' t_2 + \frac{\pi J t_1}{2}\right) + \cos\left(\Omega_I t_3 - \pi J' t_2 - \frac{\pi J t_1}{2}\right) \right]
 \end{aligned} \tag{9}$$

is obtained. This equation represents the FID signals of 3D J-resolved NMR spectroscopy for ISK spin system. These are the six signals at $(\frac{J}{4}, 0, \Omega_I)$, $(-\frac{J}{4}, 0, \Omega_I)$, $(\frac{J}{4}, \frac{J'}{2}, \Omega_I)$, $(-\frac{J}{4}, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{4}, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{4}, -\frac{J'}{2}, \Omega_I)$ with the same relative intensities. In these signal representations, the first, second and the third terms are the values at F_1 , F_2 and F_3 axes, respectively. Since the gated decoupler pulse sequence is used, spin-spin couplings in F_1 and F_2 dimensions are scaled by a factor of 0.5.

For IS_2K spin system, by using the same pulse sequence we obtain

$$\sigma_7 = I_y C_J^2 + I_y K_z^2 C_J^2 C'_J - I_y K_z^2 C_J^2 \tag{10}$$

and

$$\sigma_8 = \sigma_7 C_I. \tag{11}$$

By using the results in Table 1, the signal representation becomes as

$$\langle I_y \rangle = C_I + 2C'_J C_I + C_{2J} C_I + 2C_{2J} C'_J C_I. \tag{12}$$

This equation represents the signals at $(\frac{J}{2}, 0, \Omega_I)$, $(-\frac{J}{2}, 0, \Omega_I)$, $(\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(0, 0, \Omega_I)$, $(0, \frac{J'}{2}, \Omega_I)$, $(0, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$ with the relative intensities of 1:1:1:2:2:2:1:1:1.

For the ISK_2 spin system, by applying the same procedure,

$$\sigma_8 = \left[I_y + I_y (K_{1z}^2 + K_{2z}^2) [C'_J - 1] + I_y K_{1z}^2 K_{2z}^2 \left[\frac{3}{2} + \frac{1}{2} C_{2J} - 2C'_J \right] \right] C_J C_I \tag{13}$$

is obtained. Then by using the Table 1,

$$\langle I_y \rangle = 3C_J C_I + 4C'_J C_J C_I + 2C_J C_J C_I \tag{14}$$

is found. This equation represents the signals at $(\frac{J}{4}, J', \Omega_I)$, $(-\frac{J}{4}, J', \Omega_I)$, $(\frac{J}{4}, \frac{J'}{2}, \Omega_I)$, $(-\frac{J}{4}, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{4}, 0, \Omega_I)$, $(-\frac{J}{4}, 0, \Omega_I)$, $(\frac{J}{4}, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{4}, -\frac{J'}{2}, \Omega_I)$, $(\frac{J}{4}, -J', \Omega_I)$, $(-\frac{J}{4}, -J', \Omega_I)$ with a relative intensity distribution of 1:1:2:2:3:3:2:2:1:1.

IS_nK_m(I = 1/2, S = 1 and K = 1) Spin System

The abbreviations used in the *IS_nK_m(I = 1/2, S = 1, K = 1; n = 1,2, m = 1,2)* spin system are: $C_{nJ} = \text{Cos}n\pi Jt_1$, $C'_{nJ} = \text{Cos}n\pi J't_2$ and $C_I = \text{Cos}\Omega_I t_3$. Spin-spin coupling parameters are the same as explained in the previous subsection.

For the ***ISK*** spin system $\sigma_0 = I_z$ is the density matrix operator at thermal equilibrium and the density matrices for each labelled point are as following

$$\sigma_1 = -I_y, \sigma_2 = -I_y - I_y S_x^2 (C_J - 1), \quad (15)$$

$$\sigma_3 = \sigma_4 = I_y + I_y S_z^2 (C_J - 1) \quad (16)$$

and

$$\begin{aligned} \sigma_5 = \sigma_6 = \sigma_7 = I_y + I_y S_z^2 (C_J - 1) + I_y K_z^2 (C'_J - 1) \\ + I_y S_z^2 K_z^2 (C_J - 1) (C'_J - 1). \end{aligned} \quad (17)$$

Under the chemical shift evolution during t_3 , density matrix becomes

$$\sigma_3 = [I_y + I_y S_x^2 (C_J - 1) + I_y K_z^2 (C'_J - 1) + I_y S_z^2 K_z^2 (C_J - 1) (C'_J - 1)] C_I. \quad (18)$$

For the *IS_nK_m* spin system ($I = 1/2, S = 1, K = 1, n = 1,2, m = 1,2$), calculated $\text{Tr}(I_y O)$ values are given in Table 2. By using the Table 2,

$$\langle I_y \rangle = \frac{1}{2} C_I + C_J C_I + C'_J C_I + 2C_J C'_J C_I \quad (19)$$

is obtained. This equation represents the FID signals of 3D J-resolved NMR spectroscopy for the ***ISK*** spin system. These are the nine signals at $(\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(0, \frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, 0, \Omega_I)$, $(0, 0, \Omega_I)$, $(-\frac{J}{2}, 0, \Omega_I)$, $(\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$, $(0, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$ with the same relative intensities.

For the ***ISK₂*** spin system,

$$\begin{aligned} \langle I_y \rangle = \frac{3}{2} C_I + 3C_J C_I + 2C'_J C_I + 4C'_J C_J C_I + C'_{2J} C_I + 2C'_{2J} C_J C_I \\ \end{aligned} \quad (20)$$

is found. This equation represents fifteen signals at $(\frac{J}{2}, J', \Omega_I)$, $(0, J', \Omega_I)$, $(-\frac{J}{2}, J', \Omega_I)$, $(\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(0, \frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, 0, \Omega_I)$, $(0, 0, \Omega_I)$, $(-\frac{J}{2}, 0, \Omega_I)$, $(\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$, $(0, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, -J', \Omega_I)$, $(0, -J', \Omega_I)$, $(-\frac{J}{2}, -J', \Omega_I)$ with relative intensities 1:1:1:2:2:2:3:3:2:2:2:1:1:1.

For the ***IS₂K*** spin system

$$\begin{aligned} \langle I_y \rangle = \frac{3}{2} C_I + 3C'_J C_I + 2C_J C_I + 4C_J C_J C_I + C_{2J} C_I + 2C_{2J} C'_J C_I \\ \end{aligned} \quad (21)$$

Table 2. The Results of the $Tr(I_y O)$ Calculations for Some of the Observable Product Operators in the $IS_n K_m$ Spin System ($I = 1/2, S = 1, K = 1; n = 1, 2, m = 1, 2$)

Spin System	Product Operator (O)	$Tr(I_y O)$
ISK	I_y	18/4
	$I_y S_z^2$	3
	$I_y S_z^2 (K_{1z}^2 + K_{2z}^2)$	3
	$I_y S_z^2 K_z^2$	8/4
$IS_2 K$	I_y	54/4
	$I_y S_z^2$	9
	$I_y (K_{1z}^2 + K_{2z}^2)$	18
	$I_y S_z^2 (K_{1z}^2 + K_{2z}^2)$	12
	$I_y K_{1z}^2 K_{2z}^2$	6
	$I_y S_z^2 K_{1z}^2 K_{2z}^2$	4
ISK_2	I_y	54/4
	$I_y K_z^2$	9
	$I_y (S_{1z}^2 + S_{2z}^2)$	18
	$I_y (S_{1z}^2 + S_{2z}^2) K_z^2$	12
	$I_y S_{1z}^2 S_{2z}^2$	6
	$I_y S_{1z}^2 S_{2z}^2 K_z^2$	4

is found. As seen in this equation, there exist fifteen signals at $(J, \frac{J'}{2}, \Omega_I)$, $(J, 0, \Omega_I)$, $(-J, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, 0, \Omega_I)$, $(-\frac{J}{2}, \frac{J'}{2}, \Omega_I)$, $(0, \frac{J'}{2}, \Omega_I)$, $(0, 0, \Omega_I)$, $(0, -\frac{J'}{2}, \Omega_I)$, $(\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$, $(-\frac{J}{2}, 0, \Omega_I)$, $(-\frac{J}{2}, -\frac{J'}{2}, \Omega_I)$, $(J, -\frac{J'}{2}, \Omega_I)$, $(-J, 0, \Omega_I)$, $(-J, -\frac{J}{2}, \Omega_I)$, with relative intensities of 1:1:1:2:2:2:3:3:3:2:2:2:1:1:1.

CONCLUSION

It is known that 3D J-resolved NMR spectroscopy is widely used for resolving the chemical shift along the one axis and spin-spin coupling parameters along the two different axes. And the product operator formalism became a technique to use in analytical description of multi-dimensional and multiple-pulse NMR experiments for the weakly coupled spin systems having spin $\frac{1}{2}$ and spin-1. Therefore, by using the product operator theory analytical description of heteronuclear 3D J-resolved NMR spectroscopy for both $IS_n K_m$ ($I = 1/2, S = 1/2, K = 1; n = 1, 2, m = 1, 2$) and $IS_n K_m$ ($I = 1/2, S = 1, K = 1; n = 1, 2, m = 1, 2$) spin systems are first presented in this study. One can easily show that these results found here are consistent with those of classical formalism.

REFERENCES

1. Sfrensen O.W., Eich G.W., Levitt M.H., Bodenhausen G. and Ernst R.R., "Product Operator Formalism for the Description of NMR Pulse Experiments," *Prog. NMR Spectrosc.* 1983; **16**: 163.
2. Van de Ven F.J.M. and Hilbers C.W., "A Simple Formalism for the Description of Multiple-Pulse Experiments. Application to a Weakly Coupled Two-Spin ($I = 1/2$) System," *J. Magn. Res.* 1983; **54**: 512.
3. Packer K.J. and Wright K.M., "The Use of Single-Spin Operator Basis Sets in the NMR Spectroscopy of Scalar-Coupled Spin Systems," *Mol. Phys.* 1983; **50**: 797.
4. Shriver J., "Product Operators and Coherence Transfer in Multiple-Pulse NMR Experiments," *Concepts Magn. Res.* 1992; **4:1**
5. Howarth M.A., Lian L.Y., Hawkes G.E. and Sales K.D., "Formalisms for the Description of Multiple-Pulse NMR Experiments," *J. Magn. Res.* 1986; **68**: 433.
6. Ernst R.R., Bodenhausen G. and Wokaun A., *Principles of Nuclear Magnetic Resonance in One and Two Dimensions*, Oxford: Clarendon Press, 1987.
7. Chandrakumar N. and Subramanian S., *Modern Techniques in High Resolution FT NMR*, New York: Springer, 1987.
8. Benn R. and Günther H., "Modern Pulse Methods in High-Resolution NMR Spectroscopy," *Angew. Chem. Int. Ed. Engl.* 1983; **22**: 350.
9. Sze K.H., Yan X.Z., Kong X.M., Che C.T. and Zhu G., "Phase Sensitive 3D J-Resolved HMBC Experiment for Spectral Assignment and Measurement of Long-Range Heteronuclear Coupling Constants," *Tetrahedron Lett.* 1999; **40**: 5587.
10. Gençten A. and Köksal F., "A Product Operator Description of 2D-J Resolved NMR Spectroscopy for IS_n Spin System ($I = 1/2, S = 1$)," *Spect. Lett.* 1997; **30(1)**: 71.
11. Gençten A., Özdogan T. and Köksal F., "A Product Operator Theory of 2D DEPT J-Resolved NMR Spectroscopy for IS_n Spin System ($I = 1/2, S = 1$)," *Spect. Lett.* 1998; **31(5)**: 981.

Received August 4, 2000

Accepted January 3, 2001

Request Permission or Order Reprints Instantly!

Interested in copying and sharing this article? In most cases, U.S. Copyright Law requires that you get permission from the article's rightsholder before using copyrighted content.

All information and materials found in this article, including but not limited to text, trademarks, patents, logos, graphics and images (the "Materials"), are the copyrighted works and other forms of intellectual property of Marcel Dekker, Inc., or its licensors. All rights not expressly granted are reserved.

Get permission to lawfully reproduce and distribute the Materials or order reprints quickly and painlessly. Simply click on the "Request Permission/Reprints Here" link below and follow the instructions. Visit the [U.S. Copyright Office](#) for information on Fair Use limitations of U.S. copyright law. Please refer to The Association of American Publishers' (AAP) website for guidelines on [Fair Use in the Classroom](#).

The Materials are for your personal use only and cannot be reformatted, reposted, resold or distributed by electronic means or otherwise without permission from Marcel Dekker, Inc. Marcel Dekker, Inc. grants you the limited right to display the Materials only on your personal computer or personal wireless device, and to copy and download single copies of such Materials provided that any copyright, trademark or other notice appearing on such Materials is also retained by, displayed, copied or downloaded as part of the Materials and is not removed or obscured, and provided you do not edit, modify, alter or enhance the Materials. Please refer to our [Website User Agreement](#) for more details.

Order now!

Reprints of this article can also be ordered at
<http://www.dekker.com/servlet/product/DOI/101081SL100002286>